Menoufiya University
Faculty of Engineering Shebin El-Kom $2{ }^{\text {nd }}$ Semester Examination Academic Year: 2014-2015

Department: Basic Science Eng. Year: Design \& Production Eng. Subject : Physics
Time Allowed: 3 hours
Date: $\quad 7 / 6 / 2015$

Answer All the Following Questions [90Marks]

O1 a). Prove that the total energy of a body moves damping simple harmonic
[18 Marks] motion is not conserved and compare with the total energy of free SHM.
b) A mass has 2 kg attached to a spring of force constant $0.3 \mathrm{~N} / \mathrm{cm}$ oscillates on a horizontal frietionless track. The spring is compressed 3 cm , at time $t=0$, the mass is released from rest at $x=-\mathbf{3 c m}$. Determine:(i) Period of $S H M$, (ii) the maximum velocity and maximum acceleration, (iii) Express the displacement, velocity and acceleration as a function of time.
Q2 a) Prove that the energy transmitted along stretched string is directly [18 Marks] proportional to the square of its frequency.
b) A wire has length 50 cm emits fundamental note of frequency 300 Hz , when under a certain initial tension. If the tension is increased by 10 N , the frequency increases to 350 Hz . Determine the initial tension and the mass of the wire.
03 a) Prove that the intensity of periodic sound waves is directly proportional /18 Marks/ to the square of its amplitude.
b) An ambulance travels down a highway at a speed of $40 \mathrm{~m} / \mathrm{sec}$. Its siren emits sound at frequency of $\mathbf{4 6 0 H z}$. What is the frequency heard by a passenger in a car traveling at $35 \mathrm{~m} / \mathrm{sec}$ in the opposite direction as the car approaches the ambulance and as the car moves away from the ambulance?. ($v_{\text {sound }}=340 \mathrm{~m} / \mathrm{sec}$).
Q4 a) Prove that the total energy of electron in an atom is inversely
[18 Marks]
Proportional to the square quantum number.
b) (i) Compute the longest two lines and series himit of the Balmer series.
(ii) What is the percentage difference between the wavelength of the tenth line in the Paschen series and series limit, ($R=1.097 \times 10^{5} \mathrm{~cm}^{-1}$).
05 a) Prove that the maximum intensity in interference light waves is directly [18 Marks] proportional to the square of its amplitude.
b) Newton's rings are observed in reflected light $\lambda=580 \mathrm{~mm}$. The diameter of the $8^{\text {th }}$ dark ring is $\mathbf{3 m m}$. Find the radius of curvature of the lens and the thickness of the air film.
مع أطيب الأمنيـتا بـالتوفيق والنجاح أـد / السيد محمد فرج عبدالرحيم

